Project Summary:
The ATOMIUM Large Program (2018.1.00659.L) with the ALMA 12 m array is dedicated to an investigation of the interplay between the gas phase chemistry and dynamics, and the dust forming process in the winds of evolved asymptotic giant branch (AGB) and red supergiant (RSG). Seventeen oxygen rich AGB and RSG stars — spanning a range in (circum)stellar parameters and evolutionary phases — were observed in a series of homogeneous observations that covered 27 GHz in the 213-270 GHz range. The observations were done with 3 array configurations at an angular resolution of ~0.025" to ~1", a sensitivity of 1.5-5 mJy/beam, and a spectral resolution of ~1.3 km/s. The wind kinematics derived from the spectral line profiles reveal that the radial velocity described by the momentum equation for a spherical wind does not capture the complexity of the velocity field. The ATOMIUM observations are complemented by optical/IR studies, spectral and interferometric monitoring of some of the species, and maser and chemical kinetic modeling. Detailed maps of the distributions of the 24 molecules observed in the survey and the associated continuum emission, serve as a Legacy for the astronomical community by (i) providing the basis for new insights in the physicochemical processes that occur in other astrophysical environments; and (ii) serving as a crucial benchmark for establishing the wind dynamics of evolved stars in single and binary star systems.
Team Members:
PI: Leen Decin (Institute of Astronomy, Ku Leuven, Belgium)
CO-PI: Carl A. Gottlieb (Harvard-Smithsonian Center for Astrophysics, US)
Consortium:
A.M.S. Richards (Jodrell Bank Centre for Astrophysics, Univ. of Manchester, UK), A. Baudry (Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, France), E. De Beck (Chalmers Univ. of Technology, Onsala Space Observatory, Sweden), J. Bolte, E. Cannon (Inst. of Astronomy, KU Leuven, Belgium), T. Ceulemans (Inst. of Astronomy, KU Leuven, Belgium), F. De Ceuster (Inst. of Astronomy, KU Leuven, Belgium), T. Danilovich (School of Physics & Astronomy, Monash Univ., Australia), A. de Koter (Anton Pannekoek Inst. of Astronomy, Univ. of Amsterdam, Netherlands), Ileyk El Mellah (CIRAS, Universidad de Santiago de Chile, Chile), M. Esseldeurs (Inst. of Astronomy, KU Leuven, Belgium), S. Etoka (Jodrell Bank Centre for Astrophysics, Univ. of Manchester, UK), D. Gobrecht (Dept. of Chemistry & Molecular Biology, Gothenburg Univ., Sweden) E. Gottlieb (School of Engineering & Applied Sciences, Harvard Univ., US), M. Gray (National Astronomical Research Inst. of Thailand), F. Herpin (Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, France), W. Homan (Institut d’Astronomie et d’Astrophysique, Belgium) M. Jeste (Max-Planck-Institut für Radioastronomie, Germany), D. Kee (National Solar Observatory, US), P. Kervella (LESIA, Observatoire de Paris, France), P. Kervella (LESIA, Observatoire de Paris, France), T. Khouri (Chalmers Univ. of Technology, Onsala Space Observatory, Sweden), E. Lagadec (Universite’ Côte d’Azur, Observatoire de la Côte d’Azur, France) S. Maes (Inst. of Astronomy, KU Leuven, Belgium), J. Malfait (Inst. of Astronomy, KU Leuven, Belgium), L. Marinho (Univ. of Bordeaux, France). I. McDonald (Jodrell Bank Centre for Astrophysics, Univ. of Manchester, UK), K.M. Menten (Max-Planck-Institut für Radioastronomie, Germany), T.J. Millar (Astrophysics Research Centre, Queen’s Univ. Belfast, UK), M. Montargès (LESIA,Observatoire de Paris - PSL, France), H.S.P. Müller (Universität zu Köln, I. Physikalisches Institut, Germany), J. Nuth (NASA/GSFC, US), B. Pimpanuwat (National Astronomical Research Inst. of Thailand), J.M.C. Plane (Univ. of Leeds, UK), D. Price (School of Physics & Astronomy, Monash University, Australia), S. Rieder (Institute of Astronomy, KU Leuven, Belgium), R. Sahai (Jet Propulsion Laboratory, US) M. Van de Sande (Leiden Observatory, Netherlands), L. Siess (Inst. of Astronomy & Astrophysics, ULB Brussels, Belgium) S.H.J. Wallström (Inst. of Astronomy, KU Leuven, Belgium), L.B.F.M. Waters (SRON Netherlands Inst. for Space Research, Anton Pannekoek Inst. of Astronomy Univ. of Amsterdam, Netherlands) K.T. Wong (Dept. of Physics & Astronomy, Uppsala Univ., Sweden), J. Yates (University College London, UK), A. Zijlstra (Jodrell Bank Centre for Astrophysics, Univ. of Manchester, UK)
ATOMIUM Publications:
ATOMIUM Large Program
Pimpanuwat B., Gray, M., Etoka, S., et al. ”ATOMIUM: Investigating the innermost regions of oxygen rich circumstellar envelopes with ALMA observations of millimeter wavelength SiO masers”, in preparation
Wallström, S. H. J., Danilovich, T., Müller, H.S.P., et al. ”ATOMIUM: Molecular inventory of 17 oxygen rich evolved stars observed with ALMA”, 2023, A&A, in press
Danilovich, T., Malfait, J., Van de Sande, M., et al. ”Chemical tracers of a highly eccentric binary orbit”, 2023, Nature Astronomy, in press
Baudry, A., Wong, K. T., Etoka, S., et al. “ATOMIUM: Probing the inner wind of evolved O-rich stars with new, highly excited H$_2$O and OH lines”, 2923, A&A, 674, A125; doi:10.48550/arXiv.2305.03171
Montargès, M., Cannon, E., de Koter, A., et al. “The VLT/SPHERE view of the ATOMIUM cool evolved star sample: I. Overview: Sample characterization through polarization analysis”, 2023, A&A, 671. A96; doi:10.1051/0004-6361/202245398
Decin, L., Gottlieb, C., Richards, A., et al. "ATOMIUM: ALMA Tracing the Origins of Molecules In dUst forming oxygen-rich M-type stars”, 2022, The Messenger, 189, 3; doi:10.18727/0722-6691/5283
Gottlieb, C. A., Decin, L., Richards, A. M. S., et al. “ATOMIUM: ALMA tracing the origins of molecules in dust forming oxygen rich M-type stars: Motivation, sample, calibration, and initial results”, 2022, A&A, 660, A94; doi:10.1051/0004-6361/202140431
Danilovich, T., Van de Sande, M., Plane, J. M. C., et al. “ATOMIUM: halide molecules around the S-type AGB star W Aquilae”, 2021, A&A, 655, A80; doi:10.1051/0004-6361/202141757
Homan, W., Pimpanuwat, B., Herpin, F., et al. “ATOMIUM: The astounding complexity of the near circumstellar environment of the M-type AGB star R Hydrae: I. Morpho-kinematical interpretation of CO and SiO emission”, 2021, A&A, 651, A82; doi:10.1051/0004-6361/202140512
Homan, W., Montargès, M., Pimpanuwat, B., et al. “ATOMIUM: A high-resolution view of the highly asymmetric wind of the AGB star $\pi^1$ Gruis: I. First detection of a new companion and its effect on the inner wind”, 2020, A&A, 644, A61; doi:10.1051/0004-6361/202039185
Decin, L., Montargès, M., Richards, A. M. S., et al. “(Sub)stellar companions shape the winds of evolved stars”, 2020, Science, 369, 1497; doi:10.1126/science.abb1229
ATOMIUM Pilot
Decin, L.; Richards, A. M. S.; Danilovich, T. , et al. “ALMA spectral line and imaging survey of a low and a high mass-loss rate AGB star between 335 and 362 GHz”, 2018, A&A 615, A28; doi:10.1051/0004-6361/201732216
Decin, L.; Richards, A. M. S.; Waters, L. B. F. M., et al. “Study of the aluminium content in AGB winds using ALMA Indications for the presence of gas-phase (Al$_2$O$_3$)$_n$ clusters”, 2017, A&A, 608, A55; doi:10.1051/0004-6361/201730782
Danilovich, T., Gottlieb, C. A., Decin, L., et al. “Rotational Spectra of Vibrationally Excited AlO and TiO in Oxygen-rich Stars”, 2020, ApJ, 904, 110; doi:10.3847/1538-4357/abc079
Homan, W., Boulangier, J., Decin, L.., and de Koter, A. ”Simplified models of circumstellar morphologies for interpreting high-resolution data. Analytical approach to the equatorial density enhancement”, 2016, A&A, 596, A91; doi:10.1051/0004-6361/201528000
ATOMIUM Motivated
Chemistry
Gobrecht, D., Hashemi, S. R., Plane, J. M. C., et al., “Bottom-up dust nucleation theory in oxygen-rich evolved stars. II. Magnesium and calcium aluminate clusters”. 2023, A&A, in press
Maes, S.; Van de Sande, M.; Danilovich, T. et al., ”Sensitivity study of chemistry in AGB outflows using chemical kinetics”, 2023, MNRAS,522, 4654; doi:10.1093/mnras/stad1152
Gobrecht, D., Plane, J. M. C.. Bromley, S. T., et al., ”Bottom-up dust nucleation theory in oxygen-rich evolved stars. I. Aluminum oxide clusters”. 2022, A&A, 658, 167; doi:10.1051/0004-6361/202141976
Van de Sande, M. and Millar, T. J., ”The impact of stellar companion UV photons on the chemistry of the circumstellar environments of AGB stars”, 2022, MNRAS, 510, 1204; doi:10.1093/mnras/stab3282
Douglas, K. M., Gobrecht, D., Plane, J. M. C., ”Experimental study of the removal of excited state phosphorus atoms by H$_2$O and H$_2$: implications for the formation of PO in stellar winds”, 2022, MNRAS, 515. 99; doi:10.1093/mnras/stac1684
Plane, J. M. C., and Robertson, S. H.. ”Master equation modelling of non-equilibrium chemistry in stellar outflows”, 2022, Faraday Discuss., 238, 461; doi:10.1039/D2FD00025C
Hydrodynamical simulations
Esseldeurs, M., Siess, L., De Ceuster, F., et al. “3D simulations of AGB stellar winds. II. Ray-tracer implementation and impact of radiation on the outflow morphology”, 2023, A&A, 674, A122; doi:10.1051/0004-6361/202346282
Siess, L., Homan, W., Toupin, S., et al. “3D simulations of AGB stellar winds. I. Steady winds and dust formation”, 2022, A&A, 667, A75; doi:10.1051/0004-6361/202243540
Maes, S., Homan, W., Malfait, J., et al., ”SPH modelling of companion-perturbed AGB outflows including a new morphology classification scheme”, 2021, A&A, 653, A25; doi:10.1051/0004-6361/202140823
Malfait, J., Homan, W., Maes, S., et al., ”SPH modelling of wind-companion interactions in eccentric AGB binary systems”, 2021, A&A, 652, A51; doi:10.1051/0004-6361/202141161
El Mellah, I., Bolte, J., Decin, L., et al., ”Wind morphology around cool evolved stars in binaries. The case of slowly accelerating oxygen-rich outflows”, 2020, A&A, 637, A91; doi:10.1051/0004-6361/202037492
ATOMIUM products:
See Gottlieb et al. 2022A&A...660A..94G for details of ATOMIUM observations and data processing. For each of 17 stars, 16 frequency tunings were used to make spectral image cubes numbered 00 - cube15 as shown in the table below. The compact, mid and extended configurations give resolutions around 1", 0".3, 0".03, which were also combined.Cube | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 |
Nch | 1920 | 1920 | 1920 | 1920 | 1920 | 1920 | 1920 | 960 | 960 | 1920 | 1920 | 1920 | 1920 | 960 | 1920 | 1920 |
Min | 213.9 | 216.1 | 220.3 | 223.7 | 227.3 | 229.6 | 235.5 | 239.2 | 244.1 | 245.4 | 251.6 | 254.0 | 258.7 | 262.1 | 265.6 | 267.8 |
Max | 215.7 | 217.9 | 222.1 | 225.5 | 229.1 | 231.5 | 237.3 | 240.1 | 245.0 | 247.3 | 253.5 | 255.8 | 260.6 | 263.1 | 267.4 | 269.7 |
The minimum and maximimum frequencies are in GHz, the exact values depend on the stellar velocity. All channels are 0.9765 MHz wide, but for some cubes the original channel numbering is from high to low frequencies.
All cubes were observed in Mid and Extended configurations, 00,01,04,05,08,09,12,13 also in Compact configuration.
All data were processed by the ALMA pipeline. We performed additional calibration and the resulting measurement sets, continuum images and spectral cubes are available along with the original data from the ALMA Science Archive. Data reduction scripts and spectra extracted from each cube are also available.
product list:
Start by downloading the README.txt summary of the LP products wget https://almascience.eso.org/dataPortal/**MAKE LINKS**Star | LINKS |
AH_Sco | group.uid___A001_X133d_X131f.lp_ldecin.README.txt |
GY_Aql | group.uid___A001_X133d_X1237.lp_ldecin.README.txt |
IRC+10011 | group.uid___A001_X133d_X1293.lp_ldecin.README.txt |
IRC_10529 | group.uid___A001_X133d_X1298.lp_ldecin.README.txt |
KW_Sgr | group.uid___A001_X133d_X1307.lp_ldecin.README.txt |
pi1_Gru | group.uid___A001_X133d_X1254.lp_ldecin.README.txt |
RW_Sco | group.uid___A001_X133d_X12bf.lp_ldecin.README.txt |
R_Aql | group.uid___A001_X133d_X1210.lp_ldecin.README.txt |
R_Hya | group.uid___A001_X133d_X127b.lp_ldecin.README.txt |
SV_Aqr | group.uid___A001_X133d_X12ef.lp_ldecin.README.txt |
S_Pav | group.uid___A001_X133d_X11c6.lp_ldecin.README.txt |
T_Mic | group.uid___A001_X133d_X120b.lp_ldecin.README.txt |
U_Del | group.uid___A001_X133d_X11b7.lp_ldecin.README.txt |
U_Her | group.uid___A001_X133d_X124f.lp_ldecin.README.txt |
VX_Sgr | group.uid___A001_X133d_X12e9.lp_ldecin.README.txt |
V_PsA | group.uid___A001_X133d_X11c1.lp_ldecin.README.txt |
W_Aql | group.uid___A001_X133d_X11bc.lp_ldecin.README.txt |
wget https://almascience.eso.org/dataPortal/group.uid___A001_X133d_X131f.lp_ldecin.README.txt
The description.pdf describes the data reduction and products in more detail. This is for VX Sgr; you can download for every star but the methods are general:
wget https://almascience.eso.org/dataPortal/group.uid___A001_X133d_X12e9.lp_ldecin.description.pdf Script atomium_asa.py**LINK** provides downloading of multiple data products. atomium_filesizes.tab **LINK** lists all the available LP products along with the file sizes. In summary: Documentation <1 MB; Spectra <10 MB (text files) Images (fits) continuum <5 GB; cubes: compact <1 GB; mid < 11GB; extended <8 GB; combined <19 GB Visibility data (measurement sets): continuum <65 GB; line and contsub MS 7 to 70 GB